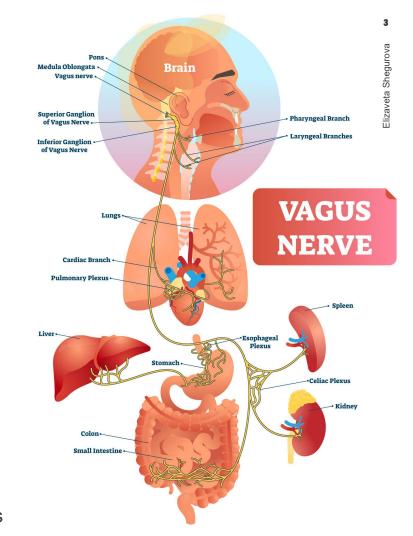


Vagus Nerve Stimulation

 École polytechnique fédérale de Lausanne

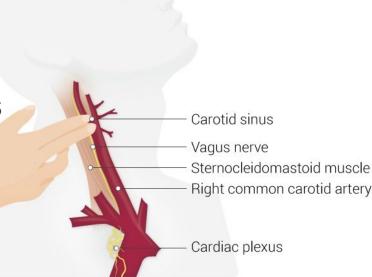
05.12.2024


References

- Standring, S. (2015), Gray's Anatomy: The Anatomical Basis of Clinical Practice (41st ed.), Elsevier, 2
- Berthoud, H. R., & Neuhuber, W. L. (2000), Functional and chemical anatomy of the afferent vagal system, Autonomic Neuroscience, 85(1-3), 1-17.3
- Câmara, R., & Griessenauer, C. J. (2015), Anatomy of the vagus nerve, In Nerves and Nerve Injuries (pp. 385-397), Academic Press, 4
- Ruffoli, R., Giorgi, F. S., Pizzanelli, C., Murri, L., Paparelli, A., & Fornai, F. (2011). The chemical neuroanatomy of vagus nerve stimulation. Journal of Chemical Neuroanatomy, 42(4), 288-296.5
- Foley, J. O., & DuBois, F. S. (1937), Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers, Journal of Comparative Neurology, 67(1), 49-67.6
- Bonaz, B., Sinniger, V., & Pellissier, S. (2017). The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Frontiers in Immunology, 8, 1452.7
- Undem, B. J., & Kollarik, M. (2005), The role of vagal afferent nerves in chronic obstructive pulmonary disease, Proceedings of the American Thoracic Society, 2(4), 355-360.8
- Breit, S., Kupferberg, A., Rogler, G., & Hasler, G. (2018), Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders, Frontiers in Psychiatry, 9, 44.
- Lanska, D. J. (2002), J.L. Corning and vagal nerve stimulation for seizures in the 1880s, Neurology, 58(3), 452-459.
- Zabara, J. (1985). Peripheral control of hypersynchronous discharge in epilepsy. Electroencephalography and Clinical Neurophysiology, 61(3), S162.
- Terry, R. S., Tarver, W. B., & Zabara, J. (1991). The implantable neurocybernetic prosthesis system. Pacing and Clinical Electrophysiology, 14(1), 86-93.
- George, M. S., Sackeim, H. A., Rush, A. J., Marangell, L. B., Nahas, Z., Husain, M. M., ... & Ballenger, J. C. (2000), Vagus nerve stimulation; a new tool for brain research and therapy, Biological Psychiatry, 47(4), 287-295.
- Val-Laillet, D., Biraben, A., Randuineau, G., & Malbert, C. H. (2010). Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite, 55(2), 245-252.
- Nemeroff, C. B., Mayberg, H. S., Krahl, S. E., McNamara, J., Frazer, A., Henry, T. R., ... & Brannan, S. K. (2006). VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology, 31(7), 1345-1355.
- Williams, C. L., & Jensen, R. A. (1993). Effects of vagotomy on Leu-enkephalin-induced changes in memory storage processes. Physiology & Behavior, 54(4), 659-663.
- French, J. A. (2007), Refractory epilepsy: clinical overview, Epilepsia, 48, 3-7.
- Ryvlin, P., et al. (2013). Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS); a retrospective study. The Lancet Neurology, 12(10), 966-977.
- Epilepsy Society. (2024). Vagus Nerve Stimulation (VNS) Therapy. Retrieved from https://epilepsysociety.org.uk/about-epilepsy/treatment/vagus-nerve-stimulation
- Cleveland Clinic, (2024), Treatment-Resistant Depression: What It Is & Symptoms.
- Rong, P., et al. (2018). Treating Depression with Transcutaneous Auricular Vagus Nerve Stimulation. Frontiers in Psychiatry, 9, 20.
- WebMD. (2022). Vagus Nerve Stimulation (VNS) for Depression.
- Wiley Periodicals, Inc. (2017), Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity.
- Bonaz, B., et al. (2021), Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases, Frontiers in Neuroscience,
- LivaNova USA. Inc. (2018). SenTiva™ M1000 Generator [Technical Guide]. Houston. Texas.
- LivaNova. (2024). Vagus Nerve Stimulation VNS Therapy for Epilepsy.
- Alomar, S., Mullin, J. P., Smithason, S., & Gonzalez-Martinez, J. (2018), Vagus nerve stimulation in medically refractory epilepsy. Neurosciences Journal, 23(1), 5-10.
- Mind, (n.d.), Vagus nerve stimulation (VNS), Retrieved December 5, 2024, from https://www.mind.org.uk/information-support/drugs-and-treatments/vagus-nerve-stimulation-vns/
- Yuan, H., & Silberstein, S. D. (2016). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II. Headache: The Journal of Head and Face Pain, 56(2), 259-266.
- Badran, B. W., Brown, J. C., Dowdle, L. T., Mithoefer, O. J., LaBate, N. T., Coatsworth, J., DeVries, W. H., Austelle, C. W., McTeague, L. M., & Yu. A. (2018), Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS), Brain Stimulation, 11(4), 947-948.
- Burger, A. M., & Verkuil, B. (2018), Transcutaneous nerve stimulation via the tragus; are we really stimulating the vagus nerve? Brain Stimulation, 11(4), 945-946.
- Redgrave, J., Day, D., Leung, H., Laud, P. J., Ali, A., Lindert, R., & Maiid, A. (2018). Safety and tolerability of transcutaneous yagus nerve stimulation in humans; a systematic review, Brain Stimulation, 11(6), 1225-1238.
- Yakunina, N., Kim, S. S., & Nam, E. C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation: Technology at the Neural Interface, 20(3), 290-300.
- gammaCore, (2024), gammaCore nVNS Therapy for Migraine and Headache Relief, Retrieved from https://www.gammacore.comConscious Spaces, (2022),
- NurosymTM Vagus Nerve Stimulator. Retrieved from https://consciousspaces.com/products/nurosym-vagus-nerve-stimulator
- Parasym. (2018). The Vagus Nerve Stimulation Devices: Ultimate Health Guide. Retrieved from https://www.parasym.co/parasym-device-transcutaneous-vagus-nerve-stimulation.html
- CyberNews, (2024), Pulsetto review for 2024; does it really work? Retrieved from https://cybernews.com/health-tech/pulsetto-review/
- Neuvana, (2024), Xen I Vagus Nerve Stimulation I Winner Of CES 2020, Retrieved from https://neuvanalife.com/products/xen
 - Cleveland Clinic. (2024). Vagus Nerve Stimulation (VNS): What It Is, Uses & Side Effects. Retrieved from https://my.clevelandclinic.org/health/treatments/17598-vagus-nerve-stimulation
- Kahlow, H., & Olivecrona, M. (2016). Complications of vagal nerve stimulation for drug-resistant epilepsy: A single center longitudinal study of 143 patients. Neurosurgery, 78(2), 178-186.
- Medical News Today, (2024), Vagus nerve stimulation: Uses, benefits, and risks, Retrieved from https://www.medicalnewstoday.com/articles/yagus-nerve-stimulation
- Morris, G. L., & Mueller, W. M. (2001), Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy, Neurology, 57(9), 1731-1735.

The Vagus Nerve

- 10th paired cranial nerve
- Longest cranial nerve
- Originates from medulla oblongata
- Extends through neck, thorax, and abdomen
- Branches: Auricular, cardiac, pulmonary, and abdominal
- Afferent Fibers (80%): Sensory input to the brain
- Efferent Fibers (20%): Motor output to organs
- Functions:
 - Modulates heart rate
 - Controls gastrointestinal peristalsis
 - Regulates bronchoconstriction
 - Influences mood and immune responses



History of Vagus Nerve Stimulation (VNS)

- 1880s: Carotid massage noted to suppress seizures
- 1930s-1940s: Animal studies demonstrated anticonvulsant effects of vagal stimulation
- 1980s: Development of implantable VNS devices
- 1997: FDA approval for refractory epilepsy
- 2005: FDA approval for treatmentresistant depression

Current Research:

Investigating applications in Alzheimer's disease, obesity, and chronic pain

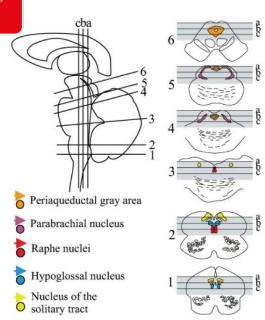
Vagus Nerve Stimulation

Mechanisms of Vagus Nerve Stimulation

Neural Pathways:

Electrical impulses delivered to the vagus nerve

Activation of afferent fibres transmitting signals to the nucleus tractus solitarius


Modulation of brain regions: amygdala, hypothalamus, and cortex

 Increased release of neurotransmitters: serotonin, norepinephrine, and GABA

Anti-inflammatory Actions:

- Activation of the cholinergic anti-inflammatory pathway
- Reduction of pro-inflammatory cytokines

Vagus Nerve Stimulatio

Refractory Epilepsy

- Seizures persisting despite treatment
- Affects ~30% of epilepsy patients.

Causes:

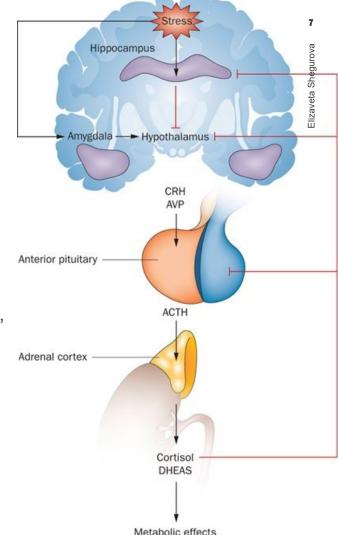
- Structural brain abnormalities
- Genetic predispositions
- Infections

Consequences:

- Increased risk of injury, cognitive decline, and sudden unexpected death
- Social and psychological challenges due to uncontrolled seizures

VNS:

- Modulates brain regions involved in seizure generation (thalamus and cortex)
- Reduces seizure frequency by ≥50% in half of treated patients
- Enhances quality of life



Treatment-Resistant Depression

- Major depressive disorder that does not respond to treatment
- Affects ~10-20% of individuals with depression
- Symptoms:
 - Persistent sadness, anhedonia (loss of pleasure), fatigue, concentration difficulties, and suicidal ideation
- Pathophysiology:
 - Dysregulated neurotransmitter systems (e.g., serotonin, norepinephrine)
 - Impaired neuroplasticity and hypothalamic-pituitaryadrenal (HPA) axis dysfunction

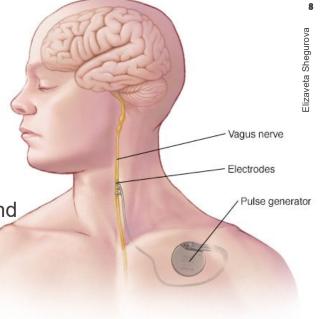
VNS :

- Improves neurotransmitter activity and neuroplasticity.
- Sustains remission in ~27-30% of patients over longterm follow-up
- Often combined with standard treatments like antidepressants or psychotherapy

Left Cervical Vagus Nerve Stimulation

Procedure:

Surgical implantation of a pulse generator in the left chest


 Lead wires connect to electrodes wrapped around the left cervical vagus nerve.

Advantages:

Minimised cardiac side effects

Clinical Applications:

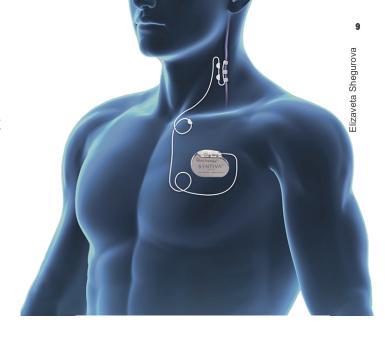
- Approved for refractory epilepsy and treatmentresistant depression
- Emerging evidence for use in chronic heart failure and inflammatory diseases.

LivaNova

Device:

- Pulse Generator: Surgically implanted batteryoperated device placed subcutaneously in the left chest wall
- **Lead Wires:** Connect the generator to electrodes wrapped around the left cervical vagus nerve.
- Programmer: A handheld device used by clinicians to adjust stimulation parameters.

Stimulation Parameters:


- Frequency: 20-30 Hz.
- Pulse Width: 250-500 microseconds.
- Current Intensity: Adjustable from 0.25 to 3.5 mA.
- Duty Cycle: Customizable on/off periods.

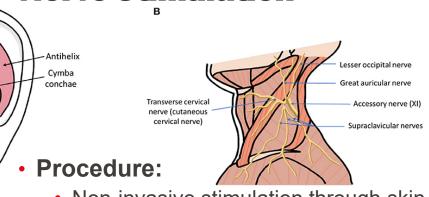
FDA-Approved Indications:

- Refractory epilepsy (1997).
- Treatment-resistant depression (2005).

Efficacy:

- Long-term seizure reduction in 40-50% of patients with epilepsy.
- Sustained symptom improvement in depression over 5 years.

Considerations:


- Can induce bradycardia and cardiac arrhythmias
- Animal studies have shown greater cardiac effects with right-sided stimulation

Clinical Applications:

- Generally avoided due to potential cardiac risks
- Some investigational uses in controlled settings

Cavum conchae

Transcutaneous Vagus Nerve Stimulation

- Non-invasive stimulation through skin
- Targets auricular branch (ear) or cervical branch (neck) of the vagus nerve

Advantages:

- Non-invasive, avoiding surgical risks
- Accessible for a broader range of patients

Limitations:

- Lower efficacy compared to implantable VNS for severe cases.
- Inconsistent stimulation parameters and protocols across studies.

gammaCore

- Portable, handheld device designed for non-invasive vagus nerve stimulation.
- Composed of two flat stimulation surfaces that deliver electrical pulses
- FDA-approved for acute and preventive treatment of cluster headaches and migraines.
- Targets the vagus nerve in the neck region

Nurosym

- Wearable device delivering transcutaneous auricular vagus nerve stimulation
- Targets the tragus of the ear via a small electrode
- Treatment of anxiety, stress, inflammation, and mood disorders
- Adjustable intensity for patient comfort
- Sessions are typically conducted several times daily for cumulative effects

Pulsetto

- Wearable neckband device delivering bilateral transcutaneous vagus nerve stimulation
- Uses dual electrodes to stimulate both vagus nerves
- Treatment of stress, anxiety, and sleep disturbances
- App integration for personalised use

Neuvana's Xen

- Earbud-based system for auricular vagus nerve stimulation
- Stimulates the cymba concha of the left ear
- Provides relaxation, stress relief, and overall wellness
- App integration
 - Synchronises stimulation with music for a calming experience

Safety and Side Effects

- Implantable VNS Common Side Effects:
 - Hoarseness, coughing, dyspnea, neck pain
- Rare Complications:
 - Wound infections, lead migrations, vocal cord paralysis
- tVNS Common Side Effects:
 - Mild skin irritation, tingling, and discomfort
- Rare Complications:
 - None reported due to its non-invasive nature
- Safety Measures:
 - Patients with implantable devices should avoid full-body MRI and diathermy
 - Device programming can mitigate side effects by adjusting parameters.

Clinical Efficacy

Epilepsy:

- 50% responder rate (≥50% seizure reduction) in drug-resistant cases
- Paediatric efficacy demonstrated with good safety profiles

Depression:

- 30% remission rate in treatment-resistant depression (5-year studies)
- Enhanced when combined with standard care or psychotropic medication

Emerging Conditions:

- Rheumatoid Arthritis:
 - Modulates TNF-alpha levels, reducing joint inflammation
- Alzheimer's Disease:
 - Early trials show improved memory and reduced beta-amyloid plaques

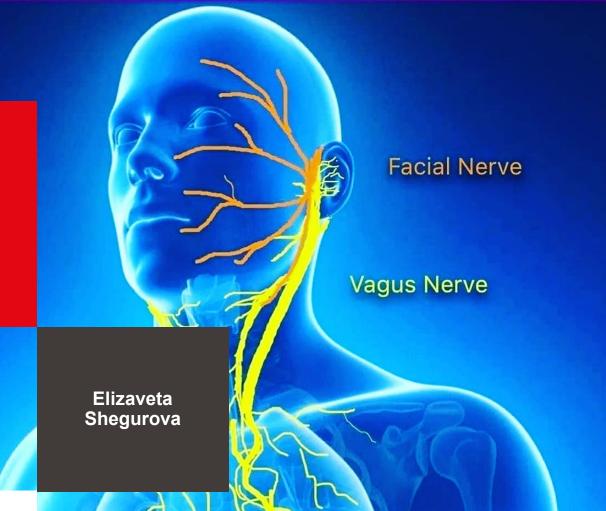
Closed-Loop Systems:

Real-time monitoring and adjustment of stimulation parameters

Miniaturized Devices:

Injectables for minimally invasive applications

Expanded Indications


- Stroke recovery: Promotes neuroplasticity and motor function improvement
- Obesity management: Modulates appetite-regulating pathways
- PTSD and anxiety disorders: Ongoing trials

Challenges:

- Addressing patient variability in response
- Reducing costs and improving accessibility

THANK YOU

 École polytechnique fédérale de Lausanne

05.12.2024